3.44 \(\int x (a+b \text {sech}^{-1}(c x))^3 \, dx\)

Optimal. Leaf size=126 \[ \frac {3 b^2 \log \left (e^{2 \text {sech}^{-1}(c x)}+1\right ) \left (a+b \text {sech}^{-1}(c x)\right )}{c^2}-\frac {3 b \sqrt {\frac {1-c x}{c x+1}} (c x+1) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {3 b^3 \text {Li}_2\left (-e^{2 \text {sech}^{-1}(c x)}\right )}{2 c^2} \]

[Out]

-3/2*b*(a+b*arcsech(c*x))^2/c^2+1/2*x^2*(a+b*arcsech(c*x))^3+3*b^2*(a+b*arcsech(c*x))*ln(1+(1/c/x+(-1+1/c/x)^(
1/2)*(1+1/c/x)^(1/2))^2)/c^2+3/2*b^3*polylog(2,-(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2)/c^2-3/2*b*(c*x+1)*
(a+b*arcsech(c*x))^2*((-c*x+1)/(c*x+1))^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {6285, 5451, 4184, 3718, 2190, 2279, 2391} \[ \frac {3 b^3 \text {PolyLog}\left (2,-e^{2 \text {sech}^{-1}(c x)}\right )}{2 c^2}+\frac {3 b^2 \log \left (e^{2 \text {sech}^{-1}(c x)}+1\right ) \left (a+b \text {sech}^{-1}(c x)\right )}{c^2}-\frac {3 b \sqrt {\frac {1-c x}{c x+1}} (c x+1) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3 \]

Antiderivative was successfully verified.

[In]

Int[x*(a + b*ArcSech[c*x])^3,x]

[Out]

(-3*b*(a + b*ArcSech[c*x])^2)/(2*c^2) - (3*b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcSech[c*x])^2)/(2*c^
2) + (x^2*(a + b*ArcSech[c*x])^3)/2 + (3*b^2*(a + b*ArcSech[c*x])*Log[1 + E^(2*ArcSech[c*x])])/c^2 + (3*b^3*Po
lyLog[2, -E^(2*ArcSech[c*x])])/(2*c^2)

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3718

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c + d*x)^(m +
 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(1 + E^(2*(-(I*e) + f*fz*x))), x],
x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]

Rule 4184

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Simp[((c + d*x)^m*Cot[e + f*x])/f, x]
+ Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 5451

Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> -Si
mp[((c + d*x)^m*Sech[a + b*x]^n)/(b*n), x] + Dist[(d*m)/(b*n), Int[(c + d*x)^(m - 1)*Sech[a + b*x]^n, x], x] /
; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]

Rule 6285

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int x \left (a+b \text {sech}^{-1}(c x)\right )^3 \, dx &=-\frac {\operatorname {Subst}\left (\int (a+b x)^3 \text {sech}^2(x) \tanh (x) \, dx,x,\text {sech}^{-1}(c x)\right )}{c^2}\\ &=\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3-\frac {(3 b) \operatorname {Subst}\left (\int (a+b x)^2 \text {sech}^2(x) \, dx,x,\text {sech}^{-1}(c x)\right )}{2 c^2}\\ &=-\frac {3 b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int (a+b x) \tanh (x) \, dx,x,\text {sech}^{-1}(c x)\right )}{c^2}\\ &=-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {\left (6 b^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x} (a+b x)}{1+e^{2 x}} \, dx,x,\text {sech}^{-1}(c x)\right )}{c^2}\\ &=-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {3 b^2 \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+e^{2 \text {sech}^{-1}(c x)}\right )}{c^2}-\frac {\left (3 b^3\right ) \operatorname {Subst}\left (\int \log \left (1+e^{2 x}\right ) \, dx,x,\text {sech}^{-1}(c x)\right )}{c^2}\\ &=-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {3 b^2 \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+e^{2 \text {sech}^{-1}(c x)}\right )}{c^2}-\frac {\left (3 b^3\right ) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 \text {sech}^{-1}(c x)}\right )}{2 c^2}\\ &=-\frac {3 b \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}-\frac {3 b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (a+b \text {sech}^{-1}(c x)\right )^2}{2 c^2}+\frac {1}{2} x^2 \left (a+b \text {sech}^{-1}(c x)\right )^3+\frac {3 b^2 \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+e^{2 \text {sech}^{-1}(c x)}\right )}{c^2}+\frac {3 b^3 \text {Li}_2\left (-e^{2 \text {sech}^{-1}(c x)}\right )}{2 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.95, size = 219, normalized size = 1.74 \[ \frac {a \left (a \left (a c^2 x^2-3 b \sqrt {\frac {1-c x}{c x+1}} (c x+1)\right )+6 b^2 \log \left (\frac {1}{c x}\right )\right )-3 b^2 \text {sech}^{-1}(c x)^2 \left (b \left (c x \sqrt {\frac {1-c x}{c x+1}}+\sqrt {\frac {1-c x}{c x+1}}-1\right )-a c^2 x^2\right )+3 b \text {sech}^{-1}(c x) \left (a \left (a c^2 x^2-2 b \sqrt {\frac {1-c x}{c x+1}} (c x+1)\right )+2 b^2 \log \left (e^{-2 \text {sech}^{-1}(c x)}+1\right )\right )+b^3 c^2 x^2 \text {sech}^{-1}(c x)^3-3 b^3 \text {Li}_2\left (-e^{-2 \text {sech}^{-1}(c x)}\right )}{2 c^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x*(a + b*ArcSech[c*x])^3,x]

[Out]

(-3*b^2*(-(a*c^2*x^2) + b*(-1 + Sqrt[(1 - c*x)/(1 + c*x)] + c*x*Sqrt[(1 - c*x)/(1 + c*x)]))*ArcSech[c*x]^2 + b
^3*c^2*x^2*ArcSech[c*x]^3 + 3*b*ArcSech[c*x]*(a*(a*c^2*x^2 - 2*b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)) + 2*b^2*
Log[1 + E^(-2*ArcSech[c*x])]) + a*(a*(a*c^2*x^2 - 3*b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)) + 6*b^2*Log[1/(c*x)
]) - 3*b^3*PolyLog[2, -E^(-2*ArcSech[c*x])])/(2*c^2)

________________________________________________________________________________________

fricas [F]  time = 0.61, size = 0, normalized size = 0.00 \[ {\rm integral}\left (b^{3} x \operatorname {arsech}\left (c x\right )^{3} + 3 \, a b^{2} x \operatorname {arsech}\left (c x\right )^{2} + 3 \, a^{2} b x \operatorname {arsech}\left (c x\right ) + a^{3} x, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsech(c*x))^3,x, algorithm="fricas")

[Out]

integral(b^3*x*arcsech(c*x)^3 + 3*a*b^2*x*arcsech(c*x)^2 + 3*a^2*b*x*arcsech(c*x) + a^3*x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arsech}\left (c x\right ) + a\right )}^{3} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsech(c*x))^3,x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)^3*x, x)

________________________________________________________________________________________

maple [B]  time = 0.72, size = 343, normalized size = 2.72 \[ \frac {x^{2} a^{3}}{2}+\frac {x^{2} b^{3} \mathrm {arcsech}\left (c x \right )^{3}}{2}-\frac {3 b^{3} \mathrm {arcsech}\left (c x \right )^{2} \sqrt {-\frac {c x -1}{c x}}\, \sqrt {\frac {c x +1}{c x}}\, x}{2 c}-\frac {3 b^{3} \mathrm {arcsech}\left (c x \right )^{2}}{2 c^{2}}+\frac {3 b^{3} \mathrm {arcsech}\left (c x \right ) \ln \left (1+\left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}\right )}{c^{2}}+\frac {3 b^{3} \polylog \left (2, -\left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}\right )}{2 c^{2}}-\frac {3 a \,b^{2} \mathrm {arcsech}\left (c x \right )}{c^{2}}+\frac {3 x^{2} a \,b^{2} \mathrm {arcsech}\left (c x \right )^{2}}{2}-\frac {3 a \,b^{2} \mathrm {arcsech}\left (c x \right ) \sqrt {-\frac {c x -1}{c x}}\, \sqrt {\frac {c x +1}{c x}}\, x}{c}+\frac {3 a \,b^{2} \ln \left (1+\left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}\right )}{c^{2}}+\frac {3 x^{2} a^{2} b \,\mathrm {arcsech}\left (c x \right )}{2}-\frac {3 a^{2} b \sqrt {-\frac {c x -1}{c x}}\, \sqrt {\frac {c x +1}{c x}}\, x}{2 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsech(c*x))^3,x)

[Out]

1/2*x^2*a^3+1/2*x^2*b^3*arcsech(c*x)^3-3/2/c*b^3*arcsech(c*x)^2*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*x-3/2
/c^2*b^3*arcsech(c*x)^2+3/c^2*b^3*arcsech(c*x)*ln(1+(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2)+3/2*b^3*polylo
g(2,-(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2)/c^2-3/c^2*a*b^2*arcsech(c*x)+3/2*x^2*a*b^2*arcsech(c*x)^2-3/c
*a*b^2*arcsech(c*x)*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*x+3/c^2*a*b^2*ln(1+(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c
/x)^(1/2))^2)+3/2*x^2*a^2*b*arcsech(c*x)-3/2/c*a^2*b*(-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {3}{2} \, a b^{2} x^{2} \operatorname {arsech}\left (c x\right )^{2} + \frac {1}{2} \, a^{3} x^{2} + \frac {3}{2} \, {\left (x^{2} \operatorname {arsech}\left (c x\right ) - \frac {x \sqrt {\frac {1}{c^{2} x^{2}} - 1}}{c}\right )} a^{2} b - 3 \, {\left (\frac {x \sqrt {\frac {1}{c^{2} x^{2}} - 1} \operatorname {arsech}\left (c x\right )}{c} + \frac {\log \relax (x)}{c^{2}}\right )} a b^{2} + b^{3} \int x \log \left (\sqrt {\frac {1}{c x} + 1} \sqrt {\frac {1}{c x} - 1} + \frac {1}{c x}\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsech(c*x))^3,x, algorithm="maxima")

[Out]

3/2*a*b^2*x^2*arcsech(c*x)^2 + 1/2*a^3*x^2 + 3/2*(x^2*arcsech(c*x) - x*sqrt(1/(c^2*x^2) - 1)/c)*a^2*b - 3*(x*s
qrt(1/(c^2*x^2) - 1)*arcsech(c*x)/c + log(x)/c^2)*a*b^2 + b^3*integrate(x*log(sqrt(1/(c*x) + 1)*sqrt(1/(c*x) -
 1) + 1/(c*x))^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,{\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}^3 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*acosh(1/(c*x)))^3,x)

[Out]

int(x*(a + b*acosh(1/(c*x)))^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \left (a + b \operatorname {asech}{\left (c x \right )}\right )^{3}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asech(c*x))**3,x)

[Out]

Integral(x*(a + b*asech(c*x))**3, x)

________________________________________________________________________________________